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Introduction, by Yehor Avdieiev

In this paper, we explore some fascinating applications of the well-known even for young mathemati-
cians method of the Inclusion-Exclusion. This is one of the most fundamental tools in enumerative
combinatorics. The goal of the method is to determine the cardinality of a set Q by approximating
the answer with an overcount, then subtracting off or adding on an overcounted approximation of
our original error, and so on, until we “converge” to the correct answer after finitely many steps.
One of the simplest examples of using the Principle of Inclusion-Exclusion is:

Example 0.1. How many integers 1 ≤ n ≤ 1000 are not divisible by 3, 5 and 7?

Proof. First, start from 1000. Then substract separately amount of numbers that are divisible by
3, or 5, or 7. We will get 1000− [ 10003 ]− [ 10005 ]− [ 10007 ]. We took away more than once numbers that
are divisible by at least two of those three integers. Let’s add amount of numbers that are divisible
by 15, or by 21, or by 35. We will get 1000− [ 10003 ]− [ 10005 ]− [ 10007 ] + [ 100015 ] + [ 100021 ] + [ 100035 ]. We
overcounted numbers that are divisible by all of the three integers. It’s easy to understand that
the final answer will be 1000− [ 10003 ]− [ 10005 ]− [ 10007 ] + [ 100015 ] + [ 100021 ] + [ 100035 ]− [ 1000105 ] = 457.

It turns out that the Principle of Inclusion-Exclusion applies in much more complex combina-
torial problems. We will now describe the basic formula of this principle. Let A be a finite set
of objects and S be a set of properties that the elements of A may satisfy or not. We define by
f=(Y ) (respectively, f≥(Y )) the number of objects in a set A having exactly (respectively, at least)
properties in Y ⊆ S. Then the inclusion-exclusion formula may be stated as

f=(T ) =
∑
Y⊇T

(−1)|Y−T |f≥(Y ) (1)

for any subset T ⊆ S. For T = ∅, this reads as f=(∅) =
∑

Y⊆S (−1)|Y |f≥(Y ) (while the general
case can be easily reduced to that one by replacing S by S\T and X by f≥(Y ) ⊆ X ). Moving all
the negative terms to the other side, we get an equivalent formula:

f=(∅) +
∑

|Y |−odd

f≥(Y ) =
∑

|Y |−even

f≥(Y ). (2)

Once two sets are known to have the same cardinality, it is natural to seek a bijection between
them. Let us prove the formula (2) using this idea.
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Proof. The right-hand side of the equation (2) is the cardinality of the set N of triples (x;Y ;Z),
where x ∈ A has exactly properties Z and Y ⊆ Z is a subset of even cardinality |Y |. The left-hand
side of (1) is the cardinality of the set N ′ ∪ M ′, where N ′ consists of triples (x′;Y ′;Z ′), where
x′ ∈ A posseses exactly properties Z ′ and Y ′ ⊆ Z ′ is a subset of odd cardinality |Y ′|, while the set
M ′ consists of those x ∈ A that satisfy none of the properties in S. Choose any total ordering on
the set S of properties. This allows us to define min(Y ), min(Z) for any Y ⊆ Z ⊆ S. We also set
min(Y ) = ∞ if Y = ∅. Let’s define two maps F : M ′ ∪N ′ → N and G : N → M ′ ∪N ′ via

F :

 x 7→ (x; ∅; ∅)
(x′;Y ′;Z ′) 7→ (x′;Y ′ ∪ i;Z ′), if i = min(Z ′) < min(Y ′)
(x′;Y ′;Z ′) 7→ (x′;Y ′ − i;Z ′), if i = min(Z ′) = min(Y ′)

and

G :

 (x; ∅; ∅) 7→ x
(x;Y ;Z) 7→ (x;Y ∪ i;Z), if i = min(Z) < min(Y )
(x;Y ;Z) 7→ (x;Y − i;Z), if i = min(Z) = min(Y )

It’s obvious that F ◦G = IdN and G ◦ F = IdM ′∪N ′ , hence, F and G are inverse bijective maps.
This establishes a natural combinatorial proof of the formula (2).

1 Permutations with Restricted Position and Rook’s prob-
lems, by Kseniya Drozdova

Let ω ∈ Sn be a permutation of the set [n] = {1, 2, . . . , n}. Then one may be interested in
the problems where we need to find number of ω such that some values for ω(i) are not allowed.
As an example, we shall compute in Example 1.2 the number of permutations ω ∈ Sn such that
ω(i) ̸≡ i(mod n) for i = 1, n. We shall develop some general theory that allows to solve many of
such problems.

Any subset B of [n]× [n] is called a board. For ω as above its graph G(ω) is defined via

G(ω) = {(i, ω(i)) : i ∈ [n]}.
Then, we define

Nj = #{ω ∈ Sn : j = #(B ∩G(ω))}
and consider the corresponding polynomial (the generating function of all Nj):

Nn(x) :=

n∑
j=0

Njx
j .

We also define rk as the number of placing k non-attacking rooks on B, which is the same as the
number of k-subsets of B such that no two elements have a common coordinate. The corresponding
generating function rB(x) is called a rook polynomial of the board B:

rB(x) =
∑
k

rkx
k.
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The following result establishes a relation between Nj ’s and rk’s.

Theorem 1.1. We have

Nn(x) =

n∑
k=0

rk(n− k)!(x− 1)k. (3)

First proof. The left-hand side counts the number of placing n non-attacking rooks on [n]× [n] and
labeling those on B in one of x colours {1, 2, . . . , x}. The right-hand side counts the number of ways
to place k non-attacking rooks on B and labeling them in one of the x− 1 colours (without colour
“1”), and then placing the remaining n − k rooks in (n − k)! ways, as they should occupy n − k
empty rows and columns, and painting those that get placed on B into the colour “1”. Clearly,
there is a bijection between these sets1, hence the equality (3).

Second proof. For 0 ≤ k ≤ n, let Ck denote the number of pairs (C,ω), where ω is a permutation
of [n] and C is a k-element subset of B ∩G(ω). For every j ≥ k there are Nj ways to choose ω so
that j = #(B ∩ G(ω)), then C can be chosen in

(
j
k

)
ways. Therefore Ck =

∑n
j=k Nj

(
j
k

)
. But on

the other hand, we could start with choosing C in rk ways and then extending it to ω in (n− k)!
ways (as explained above), so Ck = rk(n− k)!. Therefore rk(n− k)! =

∑
j Nj

(
j
k

)
. Multiplying this

by (x− 1)k and summing over all 0 ≤ k ≤ n we get

∑
k

rk(n− k)!(x− 1)k =
∑

n≥j≥k≥0

Nj

(
j

k

)
(x− 1)k =

n∑
j=0

Nj

j∑
k=0

(
j

k

)
(x− 1)k =

n∑
j=0

Njx
j = Nn(x),

with the third equality due to the binomial theorem.

Comparing the coefficients of x0 in both sides of the equality (3), we immediately obtain:

Corollary 1.1.1.

N0 = Nn(0) =

n∑
k=0

rk(n− k)!(−1)k.

We can also prove Corollary 1.1.1 by a direct application of the Inclusion-Exclusion principle:

Proof. It easy to see that, this equality is true:∑
X

f=(X)x#X =
∑
Y

f≥(Y )(x− 1)#Y

by using inclusion-exclusion formula f=(X) =
∑

Y⊇X f≥(Y )(−1)#(Y−X) and comparing the cor-
responding coefficients. Think of the condition that there are k rooks on the board B as the k-th
property of B. Therefore

∑
#X=j f=(X) = Nj and

∑
#Y≥j f=(X) = rj(n− k)!. Setting x = 0, we

get Q.E.D.

1Let X be a set of left-hand side colorings with painting all rooks that don’t stand on B in color 1 and Y be a set
of right-hand side colorings with removing color 1. Then we have a bijection map f : X → Y given as follows: for
x ∈ X we get f(x) by removing colours from all the rooks in x that are painted in color 1. Inverse map f−1 : Y → X
is given by: for y ∈ Y we get f−1(y) by coloring all the rooks that don’t have a colour in colour 1.
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Let us illustrate the above notions and results in the following particular setup:

Example 1.2. Find the number of permutations ω ∈ Sn such that ω(i) ̸≡ i(mod n) for i = 1, n.

Solution. Let B = {(1, 1); (2, 2); . . . ; (n, n)}. As no two squares of B share the common coordinate,
any placement of rooks on B is non-attacking, hence, rk =

(
n
k

)
. Then, according to Corollary 1.1.1

the desired number N0 equals:

N0 =

n∑
k=0

(
n

k

)
(n− k)!(−1)k =

n∑
k=0

(−1)k
n!

k!
.

Problème des ménages

This problem is asking for the number M(n) of permutations ω ∈ Sn such that ω(i) ̸≡ i, i + 1
(mod n) for all i ∈ [n]. In other words, we seek N0 for the board

B = {(1, 1); (2, 2); . . . ; (n, n); (1, 2); (2, 3); . . . ; (n, 1)}

We note right away that rk for this board is the number of ways to choose k points on a circle
with 2n points, such that no two are consecutive.

Theorem 1.3. The number of ways to choose k points, no two consecutive, from a collection of
m points arranged in a circle is m

m−k

(
m−k
k

)
.

First proof. Let’s label all points from 1 to m in clockwise order. There are m − k not chosen
points, and between any two consecutive of those there may be no more then one chosen point, so
we should choose k spaces from m−k places. So, if point 1 is not chosen then there are m−k places
for k selected points, so the number of different ways you can choose k things from a collection of
m− k of them is

(
m−k
k

)
.

If the point 1 will be among the chosen k points, then there are m − k − 1 free spaces because
one place is already taken and k − 1 more chosen points. This amounts to choosing k − 1 objects
from a collection of m− k − 1, and the number of such choices is

(
m−k−1
k−1

)
. Therefore, the desired

number is
(
m−k
k

)
+
(
m−k−1
k−1

)
=
(
m−k
k

)
+ k

m−k

(
m−k
k

)
= m

m−k

(
m−k
k

)
.

Second proof. Let f(m, k) be the desired number and let g(m, k) be the number of ways to color
in red k points, such that any two of them are nonconsecutive, from m points arranged in a circle,
and then coloring one of the non-red points blue. Let’s start by choosing a blue point, there are m
options to do this. The number of non-red points is m − k, inserting k red points between them,
we get that there are no two consecutive red points, in total there are

(
m−k
k

)
such choices. Thus,

g(m, k) = m
(
m−k
k

)
. But obviously g(m, k) = (m−k)f(m, k). Therefore f(m, k) = m

m−k

(
m−k
k

)
.

Combining Theorems 1.1 and 1.3, we obtain:

Corollary 1.3.1. The polynomial Nn(x) for the board B = {(i, i), (i, i + 1)(mod n) : 1 ≤ i ≤ n}
is given by

Nn(x) =

n∑
k=0

2n

2n− k

(
2n− k

k

)
(n− k)!(x− 1)k.
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In particular,

N0 =

n∑
k=0

2n

2n− k

(
2n− k

k

)
(n− k)!(−1)k,

where N0 is number of the permutations ω ∈ Sn such that ω(i) ̸≡ i, i+ 1 (mod n) for 1 ≤ i ≤ n.

We shall now consider a special class of boards.

Ferrers boards

A Ferrers board of shape (b1, b2, b3, . . . , bm), where bi ∈ N for i ∈ [n] and b1 ≤ b2 ≤ b3 ≤ · · · ≤ bm
is defined by:

B = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ bi}

so B is obtained from the Young diagram of the partition λ = (bm, . . . , b1) by first reflecting in
x-axis, then rotating 90◦ counterclockwise, and then parallelly transporting by the vector (m, 0).

For n ∈ N we define the polynomial (x)n = x(x− 1)(x− 2) · · · (x− n+ 1).

Theorem 1.4. Let
∑

rkx
k be the rook polynomial of the Ferrers board B of shape (b1, . . . , bm).

Set si = bi − i+ 1. Then, we have:

∑
k

rk · (x)m−k =

m∏
i=1

(x+ si). (4)

Proof. To verify an equality of polynomials it suffices to check their equality at all x ∈ N, because
if two polynomials have the same values at an infinite number of points then they coincide. To
this end, we consider the board B′ = B ∪ C where C is a rectangle x ×m placed right below B.
We shall now count rm(B′) in two ways:

1. Since B′ has m columns, each must contain exactly 1 rook. There are x+b1 = x+s1 choices
to place a rook in the first column. After doing so, there are x+ b2 − 1 = x+ s2 choices to place
a rook in the second column, . . .. Thus, overall we get rm(B′) = (x+ s1) . . . (x+ sm).

2. On the other hand, we can count separately placements of rooks on B and C. For every k,
there are rk ways to place k non-attacking rooks on B. We claim that the remaining m− k rooks
may be placed on C in (x)m−k ways, because there are x choices to place a rook in the leftmost yet
unoccupied column, after that there are x−1 choices to place a rook in the leftmost yet unoccupied
column, . . . , there x−m+ k + 1 ways to place a rook in the last unoccupied column.

This completes our proof since both sides of (4) count rm(B′).

Let S(n, k) be the Stirling number of the second kind, that is the number of partitions of an
n-element set into k nonempty sets.

Corollary 1.4.1. Let B be the triangular board (or staircase) of shape (0, 1, 2, . . . ,m − 1). Then
rk = S(m,m− k).
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Proof. To begin, we shall first prove

xn =

n∑
k=0

S(n, k)(x)k (5)

Let X be a set of x different elements and N be a set of n different elements. Then it is clear that
the left-hand side of (5) counts the number of all functions f : N −→ X. Each function is surjective
onto a subset Y of X, where Y = {f(a) : a ∈ N}. Let k = #Y , then for every k = 1, x the number
of such functions is S(n, k)(x)k, since there are S(n, k) ways to divide N into k nonempty subsets,
for the first subset from N there are x ways to choose their common values in X, for the second
there are x− 1 choices, . . . , for the last subset there are x− k + 1 choices. Hence, (5) is proven.

Now we are ready to prove the Corollary. Since si = 0 ∀ i ∈ [m] for the triangular board B, we
have xm =

∑m
k=0 rk(x)m−k. Comparing with (5), we get

∑m
k=0 rk(x)m−k =

∑m
k=0 S(m,m− k)(x)m−k.

But {(x)m−k | 0 ≤ k ≤ m} are obviously linearly independent (as they have pairwise distinct de-
grees), hence, rk = S(m,m− k).

Corollary 1.4.2. Two Ferrers boards, each with m columns (allowing empty columns), have the
same rook polynomial if and only if the corresponding multisets of the numbers si are the same.

Proof. Follows immediately from (4).

Theorem 1.5. Let 0 ≤ c1 ≤ . . . ≤ cm, and let f(c1, . . . , cm) be the number of Ferrers boards with
no empty columns and having the same rook polynomial as the Ferrers board of shape (c1, . . . , cm).
Add enough initial 0′s to c1, . . . , cm to get a shape (b1, . . . , bt) = (0, 0, 0, . . . 0, c1, . . . , cm) such that
if si = bi − i+ 1 then s1 = 0 and si < 0 for i = 2, t. Suppose that ai of sj’s are equal to −i, so in
particular,

∑
i≥1 ai = t− 1. Then, we have:

f(c1, c2, . . . , cm) =

(
a1 + a2 − 1

a2

)(
a2 + a3 − 1

a3

)(
a3 + a4 − 1

a4

)
. . .

Proof. We know that si − 1 ≤ si+1, but si ≤ 0, so by Corollary 1.4.2, we must count the number
of permutations of the multiset {1a1 , 2a2 , 3a3 , . . .} such that di +1 ≥ di+1 for i = 1, t− 2 (with the
corresponding Ferrers board being −d1, −d2 + 1, −d3 + 2, . . . ). Place a1 1′s in a line. “2”’s can
go only after “2” or “1”, therefore we can place few “2” after each “1” in a1 space so there are
(( a1

a2
)) =

(
a1+a2−1

a2

)
ways. Analogously there are

(
a2+a3−1

a3

)
ways to place “3” (we can’t insert “3”

after “1”) etc. This completes the proof.

For two boards A and B: A ⊆ [n] × [m] and B ⊆ [p] × [q]2, we define their union A ⊔ B as a
subset of [n+ p]× [m+ q] given by:

A ⊔B = {(i, j) : (i, j) ∈ A or (i− n, j −m) ∈ B}.

Then, we have the following simple property:

Lemma 1.6. rA⊔B(x) = rA(x)rB(x)

2This notion of a board does not really contradict the earlier one used to denote a subset of a square [n]× [n]
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Proof. Since A and B do not have common rows and columns placing j non-attacking rooks on
A ⊔ B amounts to placing k non-attacking rooks on A and j − k non-attacking rooks on B for

some 0 ≤ k ≤ j. Hence r
(A⊔B)
j =

∑j
k=0 r

(A)
k r

(B)
j−k (with a superscript denoting the board under

consideration), and thus rA⊔B(x) = rA(x)rB(x).

We conclude this section by illustrating how the above machinery can be applied to real-life
problems.

Consider the following problem. There are 6 tickets for different amusement rides: Ferris Wheel
(F), Tilt-A-Whirl (T), Insanity (I), Scrambler (S), Rotor (R) and Bumper Cars (B) and 6 children:
Amelia (A), Charley (C), Felix (F), Gabriel (G), Sophie (S) and Kate (K) want to distribute them
among themselves. We know that:

a. Amelia doesn’t like Insanity and Rotor
b. Charley doesn’t like Ferris Wheel
c. Felix doesn’t like Tilt-A-Whirl
d. Gabriel doesn’t like Scrambler and Bumper Cars
e. Sophie doesn’t like Ferris Wheel and Rotor
f. Kate doesn’t like Insanity

In how many ways can they distribute tickets among themselves so that everybody will be satisfied?

Solution

Note on the chessboard kind of amusement rides that children don’t like. Then, we get (see Fig.1):

F T I S R B

A

C

F

G

S

K

Fig.1

If we rearrange some rows and columns as shown on Fig.2, then the board B consisting of the
blue-colored boxes splits as a dijoint union B = B1 ⊔ B2 with B1 consisting of blue boxes in the
rectangle IRF × SKAC and B2 consisting of blue boxes in the rectangle TSB × FG.
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I R F T S B

F

G

S

K

A

C

Fig.2

According to Lemma 1.6, we have: rB(x) = rB1
(x)rB2

(x).
On B1 there is a unique way to place 0 rooks, 6 ways to place 1 rook, 10 ways to place 2 rooks

(R×S−I×K, R×S−I×A, R×S−F×C, F×S−I×K, F×S−I×A, F×S−R× A, I×K−
R×A, I×K−F ×C, I×A−F ×C, R×A−F ×C) and 4 ways to place 3 rooks, and 0 ways to
place more than 3 rooks, so rB1

(x) = 1+6x+10x2+4x3. Similarly, we get rB2
(x) = 1+3x+2x2.

Therefore, it easy to see that rB(x) = rB1
(x)rB2

(x) = (1 + 6x + 10x2 + 4x3)(1 + 3x + 2x2) =
1 + 9x+ 30x2 + 46x3 + 32x4 + 8x5. Then, by Corollary 1.1.1, the desired number is

N0 = 6!− 9 · 5! + 30 · 4!− 46 · 3! + 32 · 2!− 8 · 1! = 140.

This means there are 140 ways to distribute tickets.

2 V-partitions and Unimodal Sequences, by Yehor Avdieiev

We shall now present an example of a sieve method which is similar to (but is not implied by)
the principle of inclusion-exclusion. We define by a unimodal sequence of weight n a sequence of
positive integers a1a2a3 · · · am that satisfies:

a.
∑

ai = n
b. ∃ j : a1 ≤ a2 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ am
We can find a generating function U(q) of the total number of unimodal sequences of weight n.

Let u(n) denote the total number of unimodal sequences of weight n with u(0)=0, and consider the
corresponding generating function U(q) =

∑
n≥0 u(n)q

n. Our goal is to find an explicit formula

for U(q). To this end, we define [k]! := (1− q)(1− q2) · · · (1− qk).

Lemma 2.1. U(q)=
∑

k≥1
qk

[k]![k−1]!

Proof. It is clear that every unimodal sequence with the largest term k has the form:

w = a1a2 · · · am
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= 11 · · · 1︸ ︷︷ ︸
b1

22 · · · 2︸ ︷︷ ︸
b2

· · · kk · · · k︸ ︷︷ ︸
bk

(k − 1) · · · (k − 1)︸ ︷︷ ︸
ck−1

· · · 11 · · · 1︸ ︷︷ ︸
c1

for some b1, . . . , bk−1, c1, . . . , ck−1 ≥ 0 and bk ≥ 1.

On the other hand, we can rewrite qk

[k]![k−1]! in the form:

qk

[k]![k − 1]!
=

(1+q+q2+ . . .) · · · (1+qk−1+q2(k−1)+ . . .)(qk+q2k+q3k+ . . .)(1+qk−1+ . . .) · · · (1+q+q2+ . . .)

Having b1 of 1′s in w will cause to choose q1·b1 from the first bracket, having b2 of 2′s in w will
cause to choose q2·b2 from the second bracket and so on. We note that the free term 1 is missing
in (qk + q2k + . . .) due to the restriction bk ≥ 1.

As often happens in combinatorics, infinite sums may be written as infinite products. Our main
goal is to obtain such a product formula for U(q). To this end, we shall work with objects slightly
different from unimodal sequences and then connect them with unimodal sequences. We define a
V-partition of n to be an array:  a1 a2 · · ·

c
b1 b2 · · ·


such that all numbers are natural, c +

∑
ai +

∑
bj = n, c ≥ a1 ≥ a2 ≥ · · · , c ≥ b1 ≥ b2 ≥ · · · .

It’s easy to see, that a V-partition is a unimodal sequence of the same weight, but with a rooted
largest element. Let’s define υ(n) to be the number of a V-partitions of weight n and set υ(0) = 1.
So:

Lemma 2.2.

V (q) :=
∑
n≥0

υ(n)qn =
∑
k≥0

qk

[k]![k]!

Proof. Proof of this fact is straightforward and is completely analogous to that of the Lemma 2.1.
Let us just note that we presently have two brackets (1 + qk + q2k + . . . ), because we should root
the largest element in the V-partition.

Let us introduce yet another actor, the set Dn of double partitions of n:[
a1 a2 · · ·
b1 b2 · · ·

]
such that ai, bj ∈ N and

∑
ai +

∑
bj = n, a1 ≥ a2 ≥ . . . , b1 ≥ b2 ≥ · · · . Let’s set d(n) = |Dn|,

with the convention d(0) = 1. The following result is obvious:

Lemma 2.3.
D(q) :=

∑
n≥0

d(n)qn =
∏
k≥1

(1− qk)−2

9



Let Vn be the set of V-partitions of n, so that |Vn| = v(n). Define a map F1: Dn → Vn by

F1

[
a1 a2 . . .
b1 b2 · · ·

]
=



 a2 a3 · · ·
a1

b1 b2 · · ·

 , if a1 ≥ b1 a1 a2 · · ·
b1

b2 b3 · · ·

 , if b1 > a1

We count every V-partition that has a form

 a1 a2 · · ·
c

b1 b2 · · ·

 with c > a1 twice, because it is

the image of both

[
c a1 a2 · · ·
b1 b2 b3 · · ·

]
and

[
a1 a2 a3 · · ·
c b1 b2 · · ·

]
, while all other V-partitions are

counted precisely once. Let V 1
n be the set of the former V-partitions, i.e. those with c > a1. By

above, we get:
|Vn| = |Dn| − |V 1

n |.
Now we can define a new map F2: Dn−1 → V 1

n by

F2

[
a1 a2 · · ·
b1 b2 · · ·

]
=



 a2 a3 · · ·
a1 + 1

b1 b2 · · ·

 , if a1 + 1 ≥ b1 a1 + 1 a2 · · ·
b1

b2 b3 · · ·

 , if b1 > a1 + 1

It’s easy to understand that we count every V-partition that has a form

 a1 a2 · · ·
c

b1 b2 · · ·

 with c >

a1 > a2 twice, because it arises as image of both

[
a1 − 1 a2 a3 · · ·

c b1 b2 · · ·

]
and

[
c− 1 a1 a2 · · ·
b1 b2 b3 · · ·

]
,

while all other V-partitions in V 1
n are counted precisely once. Let’s name the former set of V-

partitions by V 2
n . Then, we get:

|Vn| = |Dn| − |V 1
n | = |Dn| −

(
|Dn−1| − |V 2

n |
)
= |Dn| − |Dn−1|+ |V 2

n |.

Then define the next map F3: Dn−3 → V 2
n by

F3

[
a1 a2 · · ·
b1 b2 · · ·

]
=



 a2 + 1 a3 · · ·
a1 + 2

b1 b2 · · ·

 , if a1 + 2 ≥ b1 a1 + 2 a2 + 1 · · ·
b1

b2 b3 · · ·

 , if b1 > a1 + 2
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Let’s denote a subset of V 2
n with c > a1 > a2 > a3 by V 3

n . Arguing as above, we get:

|Vn| = |Dn| − |Dn−1|+ |Dn−3| − |V 3
n |.

By continuing this process, we obtain the following formula:

|Vn| =
∑
i≥1

(−1)i−1

∣∣∣∣D(n−
(
i

2

)) ∣∣∣∣ =∑
i≥1

(−1)i−1d

(
n−

(
i

2

))
(6)

From the formula (6) and Lemma 2.3 we get the following result:

V (q) =
∑
n≥0

(
(−1)nq

n(n+1)
2

)
D(q) =

∑
n≥0

(
(−1)nq

n(n+1)
2

)∏
k≥1

(1− qk)−2. (7)

We also have the following simple result connecting all three generating functions introduced
above:

Lemma 2.4. U(q) + V (q) = D(q) =
∏

k≥1(1− qk)−2

Proof. We need to find a bijection Dn ↔ Un ∪ Vn. Such a bijection is given by:

[
a1 a2 · · ·
b1 b2 · · ·

]
7→


 a2 a3 · · ·
a1

b1 b2 · · ·

 , if a1 ≥ b1

· · · a2a1b1b2 · · · , if b1 > a1

Now we can finally derive the product type formula for U(q):

Theorem 2.5. U(q)=
∏

k≥1(1− qk)−2
∑

n≥1

(
(−1)n−1q

n(n+1)
2

)
Proof. Combining Lemma 2.4 and equation (7), we obtain:

U(q) = D(q)− V (q) =
∏
k≥1

(1− qk)−2 −
∑
n≥0

(
(−1)nq

n(n+1)
2

)∏
k≥1

(1− qk)−2 =

∏
k≥1

(1− qk)−2
∑
n≥0

(
(−1)n−1q

n(n+1)
2

)
.

Many famous sequences in mathematics are known to be unimodal, see [1, Exercise 1.50]. A
sequence of real numbers a1, a2, · · · , an is called log-concave if a2i ≥ ai−1ai+1 for 1 ≤ i ≤ n− 1.

Example 2.6. If a sequence of positive real numbers a1, a2, · · · , an is log-concave then a1, a2, · · · , an
is unimodal.

Proof. Suppose for contradiction that the sequence is not unimodal. Thus ∃ i, j : ai > ai+1 ≥
ai+2 ≥ · · · ≥ aj < aj+1. But then a2j < aj+1aj−1, contradicting the log-concave assumption.
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A polynomial F (x) =
∑n

i=0 aix
i with real coefficients is called unimodal (respectively, symmetric

with center n
2 ) if a0, a1, . . . , an is a unimodal (respectively, symmetric with center n

2 ) sequence.

Lemma 2.7. Let P (x) =
∑n

i=0 aix
i, Q(x) =

∑m
i=0 bix

i be symmetric, unimodal, and have non-
negative coefficients. Then the same is true for their product P (x)Q(x).

Proof. Let Pi(x) = xi + xi+1 + · · · + xn−i and Qj(x) = xj + xj+1 + · · · + xm−j . Since P (x) and
Q(x) are symmetric, we can write

P (x) =

[n/2]∑
i=0

(ai − ai−1)Pi(x) with ai − ai−1 ∈ N

Q(x) =

[m/2]∑
j=0

(bi − bi−1)Gj(x) with bi − bi−1 ∈ N

where a−1 := 0 and b−1 := 0.
Thus:

P (x)Q(x) =

[n/2]∑
i=0

[m/2]∑
j=0

(ai − ai−1)(bi − bi−1)Pi(x)Qj(x).

It’s obvious, that Pi(x)Qj(x) is unimodal with center n+m
2 . Thus P (x)Q(x) is a sum of symmetric

unimodal polynomials with the same center, and therefore so it itself. This completes the proof.

As an application, we conclude with:

Theorem 2.8.
∑

w∈Sn
xinv(w) is unimodal and symmetric.

Here, inv(w) is the inversion number of a permutation w ∈ Sn defined as number of pairs
i < j such that w(i) > w(j). We start the proof of this Theorem with the following well-known
result:

Lemma 2.9.
∑

w∈Sn
xinv(w) = (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1).

Proof. Define the inversion table I(w) of a permutation w ∈ Sn as a vector (a1, a2, . . . , an)
with ai = #{j > i : w(j) < w(i)}. Then the map w 7→ I(w) sets a bijection Sn ↔ Tn =
{(a1, a2, . . . , an) : 0 ≤ ai ≤ n− i} such that inv(w) = a1 + · · ·+ an. Hence,

∑
w∈Sn

xinv(w) =

n−1∑
a1=0

n−2∑
a2=0

· · ·
0∑

an=0

xa1+a2+···+an =

(
n−1∑
a1=0

xa1

)(
n−2∑
a2=0

xa2

)
· · ·

(
0∑

an=0

xan

)
= (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1),

as desired.

Proof of Theorem 2.8. Follows immediately from Lemma 2.9 and Lemma 2.7.
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